Journey and Evolution of Cytogenomics Technologies in Rare Diseases Where We Come From, Where We Are, and Where We Are Going

Main Article Content

Lucía I. Vago

Abstract

Rare diseases (RD) are collectively common in daily practice, with most of them having a genetic etiology and posing a high burden of morbidity both at the individual and population levels.


The technological development of cytogenomics over the past century, and especially in the last three decades, has revolutionized the approach, diagnosis, and management of these conditions. This article reviews the key milestones in this field, from the chromosomal theory of inheritance to the fascinating telomere-to-telomere map of the human genome.

Article Details

How to Cite
1.
Vago LI. Journey and Evolution of Cytogenomics Technologies in Rare Diseases: Where We Come From, Where We Are, and Where We Are Going. Actual. Osteol. [Internet]. 2025 Aug. 2 [cited 2025 Aug. 7];20(3):142-53. Available from: https://ojs.osteologia.org.ar/ojs33010/index.php/osteologia/article/view/682
Section
Reviews

References

Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet.2020;28:165-73. https://doi.org/10.1038/s41431-019-0508-0

Vinkšel M, Writzl K, Maver A, Peterlin B. Improving diagnostics of rare genetic diseases with NGS approaches. J Community Genet. 2021;12(2):247-56. doi:10.1007/s12687-020-00500-5.

Richter T, Nestler-Parr S, Babela R, et al. Rare Disease Terminology and Definitions-A Systematic Global Review: Report of the ISPOR Rare Disease Special Interest Group. Value Health. 2015;18(6):906-14. doi:10.1016/j.jval.2015.05.008.

Garrod AE. The Incidence of alkaptonuria: A Study in Chemical Individuality. 1902 The Lancet. 1996; 160(Issue 4137): 1616-20.ISSN 0140-6736, https://doi.org/10.1016/S0140-6736(01)41972-6.

Boveri T. Ergebnisse über die Konstitution der chromatischen Substanz des Zellkerns. Jena: G. Fischer: 1904. https://doi.org/10.5962/bhl.title.28064.

Sutton WS. The chromosomes in heredity. Biol Bull- US. 1903; 4:231-51-

https://www.genome.gov/

Tjio JH, Levan A. The chromosome number of man. Hereditas. 1956; 42:1-6.

Lejeune J, Gautier M, Turpin R. Les chromosomes somatique des enfants mongoliens. Comptes Rend Acad Sci Paris. 1959;248:1721.

Caspersson T, Zech L, Modest EJ, et al. Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp Cell Res. 1969;58:141-52.

Caspersson T, Zech L, Johansson C. Differential banding of alkylating fluorochromes in human chromosomes. Exp Cell Res. 1970;60:315-9.

Ferguson-Smith M.A. History and evolution of cytogenetics. Mol Cytogenet. 2015;8:19. https://doi.org/10.1186/s13039-015-0125-8

Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290-3.

Zhang C-Z, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 2013;27:2513-30.

Schreppers-Tijdink GA, et al. A systematic cytogenic study of a population of 1.170 mentally retarded and/or behaviorly disturbed patients including fragile X – screening. J Genet Hum 1988; 36:425-46.

Harper ME, Ullrich A, Saunders GF. Localisation of the human insulin gene to the distal end of the short arm of chromosome 11. Proc Natl Acad Sci. USA. 1981;78:4458-60.

Malcolm S, Barton P, Murphy CST, Ferguson-Smith MA. Chromosomal localisation of a single copy gene by in situ hybridisation : human beta-globin genes on the short arm of chromosome 11. Ann Hum Genet. 1981;45:135-41.

Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity fluorescence hybridisation. Proc Natl Acad Sci. USA. 1986;83:2934-8.

Sanger F, Nicklen S, Coulson AR. DNA Sequencing with Chain-Terminating Inhibitors. Proc Natl Acad Sci. USA. 1977;74(12):5463-7. doi:10.1073/pnas.74.12.5463.

Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome [published correction appears in Nature 2001;412(6846):565] [published correction appears in Nature 2001;411(6838):720. Szustakowki, J [corrected to Szustakowski, J]]. Nature. 2001;409(6822):860-921. doi:10.1038/35057062.

Saiki R, Gelfand D, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239 (4839):487-91. PMID 2448875. doi:10.1126/science.2448875.

Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57. doi: 10.1093/nar/gnf056. PMID: 12060695; PMCID: PMC117299.

Fernández-Rebollo E, Lecumberri B, Garin I, et al. New mechanisms involved in paternal 20q disomy associated with pseudohypoparathyroidism. Eur J Endocrinol 2010;163: 953-62.

Cigudosa J, Lapunzina P (coord.). Consenso para la implementación de los Arrays (CGH Y SNParrays) en la Genética Clínica. 2012.

Kohlmann A, Kipps TJ, Rassenti LZ, et al. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in Leukemia study prephase. Br J Haematol. 2008;142(5):802-7. doi: 10.1111/j.1365-2141.2008.07261.x. PMID: 18573112; PMCID: PMC2654477.

Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749-64. doi:10.1016/j.ajhg.2010.04.006.

Durmaz AA, Karaca E, Demkow U, et al. Evolution of genetic techniques: past, present, and beyond. Biomed Res Int. 2015;2015:461524.

Martínez F, Caro-Llopis A, Roselló M, et al. High diagnostic yield of syndromic intellectual disability by targeted next-generation sequencing. J Med Genet. 2017;54(2):87-92. doi:10.1136/jmedgenet-2016-103964.

Collins FS. Identifying human disease genes by positional cloning. Harvey Lect. 1990;86:149-64.

Lipner EM, Greenberg DA. The Rise and Fall and Rise of Linkage Analysis as a Technique for Finding and Characterizing Inherited Influences on Disease Expression. Methods Mol Biol. 2018;1706:381-97. doi:10.1007/978-1-4939-7471-9_21.

Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42(1):30-5. doi:10.1038/ng.499.

Bamshad MJ, Nickerson DA, Chong JX. Mendelian gene discovery: fast and furious with no end in sight. Am J Hum Genet. 2019;105:448-55.

Retterer K, Juusola J, Cho MT, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696-704. doi:10.1038/gim.2015.148.

Jang W, Kim Y, Han E, et al. Chromosomal Microarray Analysis as a First-Tier Clinical Diagnostic Test in Patients With Developmental Delay/Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies: A Prospective Multicenter Study in Korea. Ann Lab Med. 2019;39(3):299-310. doi:10.3343/alm.2019.39.3.299.

Al-Dewik N, Mohd H, Al-Mureikhi M, et al. Clinical exome sequencing in 509 Middle Eastern families with suspected Mendelian diseases: The Qatari experience. Am J Med Genet A. 2019;179(6):927-35. doi:10.1002/ajmg.a.61126.

Dremsek P, Schwarz T, Weil B, et al.Optical Genome Mapping in Routine Human Genetic Diagnostics-Its Advantages and Limitations. Genes (Basel). 2021;12(12):1958. doi: 10.3390/genes12121958.

Redin C, Brand H, Collins RL, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet. 2017;49(1):36-45. doi:10.1038/ng.3720

Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333-51. doi:10.1038/nrg.2016.49.

de Koning AP, Gu W, Castoe TA, et al.Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12):e1002384. doi:10.1371/journal.pgen.1002384.

Salzberg SL, Yorke JA. Beware of mis-assembled genomes. Bioinformatics. 2005;21(24):4320-1. doi:10.1093/bioinformatics/bti769.

Delaneau O, Howie B, Cox AJ, et al.Haplotype estimation using sequencing reads. Am J Hum Genet. 2013;93(4):687-96. doi: 10.1016/j.ajhg.2013.09.002.

Chaisson MJ, Wilson RK, Eichler EE. Genetic variation and the de novo assembly of human genomes. Nat Rev Genet. 2015;16(11):627-40. doi:10.1038/nrg3933.

Huddleston J, Chaisson MJP, Steinberg KM, et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data [published correction appears in Genome Res. 2018;28(1):144. doi: 10.1101/gr.233007.117.]. Genome Res. 2017;27(5):677-85. doi:10.1101/gr.214007.116

Sedlazeck FJ, Rescheneder P, Smolka M, et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461-8. doi:10.1038/s41592-018-0001-7.

Chaisson MJP, Sanders AD, Zhao X, et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun. 2019;10(1):1784. Published 2019 Apr 16. doi:10.1038/s41467-018-08148-z.

Tattini L, D'Aurizio R, Magi A. Detection of Genomic Structural Variants from Next-Generation Sequencing Data. Front Bioeng Biotechnol. 2015;3:92. doi: 10.3389/fbioe.2015.00092.

Cretu Stancu M, van Roosmalen MJ, Renkens I, et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun. 2017;8(1):1326. Published 2017 Nov 6. doi:10.1038/s41467-017-01343-4.

Mantere T, Kersten S, Hoischen A. Long-Read Sequencing Emerging in Medical Genetics. Front Genet. 2019;10:426. Published 2019 May 7. doi:10.3389/fgene.2019.00426.

Lemmers RJ, van der Vliet PJ, Balog J, et al. Deep characterization of a common D4Z4 variant identifies biallelic DUX4 expression as a modifier for disease penetrance in FSHD2. Eur J Hum Genet. 2018;26(1):94-106. doi:10.1038/s41431-017-0015-0.

Loomis EW, Eid JS, Peluso P, et al. Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Res. 2013;23(1):121-8. doi:10.1101/gr.141705.112.

Ardui S, Race V, de Ravel T, et al. Detecting AGG Interruptions in Females with a FMR1 Premutation by Long-Read Single-Molecule Sequencing: A 1 Year Clinical Experience. Front Genet. 2018;9:150. Published 2018 May 16. doi:10.3389/fgene.2018.00150.

https://www.genome.gov/about-genomics/telomere-to-telomere

Lapunzina,P. Conferencia Neurogenética Fundación queren. Madrid; noviembre de 2020.

Rahit KMTH, Tarailo-Graovac M. Genetic Modifiers and Rare Mendelian Disease. Genes (Basel). 2020;11(3):239. Published 2020 Feb 25. doi:10.3390/genes11030239.

Clark MM, Stark Z, Farnaes L, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom Med. 2018;3:16. Published 2018 Jul 9. doi:10.1038/s41525-018-0053-8.

Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet. 2024;25(6):401-15. doi: 10.1038/s41576-023-00683-w.

Ferreira CR. The burden of rare diseases. Am J Med Genet A. 2019;179(6):885-92. doi: 10.1002/ajmg.a.61124. Epub 2019 Mar 18.

McClaren BJ, Crellin E, Janinski M, et al. Preparing Medical Specialists for Genomic Medicine: Continuing Education Should Include Opportunities for Experiential Learning. Front Genet. 2020;11:151. Published 2020 Mar 3. doi:10.3389/fgene.2020.00151.