Normal physiological functions in two animal species with highly different vitamin D status compared to that of humans

Main Article Content

Rodolfo C. Puche

Abstract

Mole rats live in permanent darkness, in networks of underground tunnels (which extend up to 1 km in the subsoil), excavated with their incisors, in warm and semi-arid areas of South Africa. Mole rats have an unusually impoverished vitamin D3 status with undetectable and low plasma concentrations of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3, respectively. They express 25-hydroxylase in the liver and 1-hydroxylase and 24-hydroxylase in their kidneys. The presence of specific receptors (VDR) was confirmed in the intestine, kidney, Harders glands and skin. In spite of their poor vitamin D3 status, the apparent fractional intestinal absorption of calcium, magnesium and phosphate was high, always greater than 90%. Oral supplementation with cholecalciferol to mole rats did not improve the efficiency of gastrointestinal absorption of these minerals. Mole ratsdo not display the typical lesion of rickets: hypertrophic and radiolucent growth cartilages. Histological studies reported normal parameters of trabecular and cortical bone quality.
Marmosets (monkeys of the New World)are not hypercalcaemic, eventhough they exhibit much higher levels of 25-hydroxyvitamin D3, 1α,25-dihydroxyvitamin D3 and parathyroid hormonethan that of rhesus monkeys and humans. Fed a high vitamin D3 intake (110 IU/day/100 g of body weight), a fraction of the experimental group was found to display osteomalacic changes in their bones: distinct increases in osteoid surface, relative osteoid volume, and active osteoclastic bone resorption. These findings suggest that some marmosets appears to suffer vitamin D-dependent rickets, type II.
The maximum binding capacity of the VDR or the dissociation constant of VDR-1α,25(OH)2D3 complex of mole rats and New World monkeys are distinctly different of VDR isolated from human cells. Health status of those species appears to be adaptations to the mutations of their VDR. Though rare, as mutations may occur at any time in any patient, the overall message of this review to clinicians may be: recent clinical studies strongly suggests that the normality of physiological functions might be a better indicator of the health status than the serum levels of vitamin D metabolites.

Article Details

How to Cite
1.
Puche RC. Normal physiological functions in two animal species with highly different vitamin D status compared to that of humans. Actual. Osteol. [Internet]. 2024 Jun. 29 [cited 2024 Sep. 16];14(3):190-204. Available from: https://ojs.osteologia.org.ar/ojs33010/index.php/osteologia/article/view/215
Section
Reviews

Most read articles by the same author(s)

1 2 3 > >>