Síndrome metabólico, metformina y hueso

Contenido principal del artículo

Nahuel E. Wanionok
Antonio D. McCarthy

Resumen

El síndrome metabólico se de!ne como un trastorno heterogéneo y  multifactorial con riesgo cardiovascular elevado. Actualmente  se encuentra en franco crecimiento debido al sedentarismo y la ingesta rica en grasas y azúcares. Su tratamiento incluye la indicación de cambios en el estilo de vida, con realización de actividad física y una alimentación saludable e hipocalórica. Cuando esto no es eficaz, se pueden utilizar diferentes fármacos, y entre los más prescriptos se encuentra la metformina, caracterizada por su acción insulino-sensibilizante.
Numerosos trabajos han estudiado la vinculación del síndrome metabólico con el tejido óseo. Se demostró como resultado general, aunque no concluyente, que dicho síndrome se asocia con una disminución de la densidad mineral ósea y un aumento en la incidencia de fracturas osteoporóticas. Una de las  imitaciones de estos estudios clínicos estaría ligada a la gran heterogeneidad de los pacientes con síndrome metabólico. Por otra parte, y dado que diversos  estudios preclínicos han sugerido posibles acciones osteogénicas de la metformina, se ha investigado el posible efecto óseo de un tratamiento con este fármaco en personas con hiperglucemia o disglucemia.
Varios estudios clínicos muestran que este efecto sería nulo o, en algunos casos, de carácter protector para el sistema óseo. No obstante, se debería tener precaución en el uso de dicho fármaco en pacientes que necesiten dosis altas y/o posean riesgo elevado de fractura, ya que sus altas concentraciones podrían tener consecuencias negativas sobre el metabolismo óseo.

Detalles del artículo

Cómo citar
1.
Wanionok NE, McCarthy AD. Síndrome metabólico, metformina y hueso. Actual. Osteol. [Internet]. 31 de mayo de 2023 [citado 21 de mayo de 2024];18(3):p. 169-182. Disponible en: https://ojs.osteologia.org.ar/ojs33010/index.php/osteologia/article/view/68
Sección
Actualizaciones

Citas

Grundy SM, Cleeman JI, Daniels SR. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112(17):2735-52.

Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009; 120:1640–5.

Yamaoka K, Tango T. Effects of lifestyle modification on metabolic syndrome: a systematic review and meta-analysis. BMC Med 2012; 10:138.

Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006; 23:469- 80.

Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J 2005; 149, 33-45.

Cornier MA, Dabelea D, Hernández, TL, et al. The metabolic syndrome. Endocr Rev 2008; 29:777-822.

Handelsman Y. Metabolic syndrome pathophysiology and clinical presentation. Toxicol Pathol 2009; 37(1):18-20.

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 2001;285:2486-97.

McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol, 2018; 36:14-20.

Balkau B, Charles M.-A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med A J Br Diabet Assoc 1999; 16:442-3.

Saklayen M.G. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20:1-8.

Einhorn D. American College of Endocrinology Position Statement on the Insulin Resistance Syndrome. Endocrine Practice 2003; 9(Supplement 2):5-21.

Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med 2016; 26(4):364-73.

DiNicolantonio JJ, Mehta V, Onkaramurthy N, O'Keefe JH. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog Cardiovasc Dis 2018; 61(1):3-9.

Di Pino A, DeFronzo RA. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocr Rev; 2019; 40(6):1447–67.

Fahed G, Aoun L, Bou Zerdan M, et al. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci 2022; 23(2):786.

Han TS, Lean MEJ. Metabolic syndrome. Medicine 2014; 43(2):80-7.

Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: evaluation of pathological and therapeutic outcomes. Am Heart J 2005; 149, 20-32.

McCarthy AD, Molinuevo MS, Cortizo AM. AGEs and bone ageing in Diabetes mellitus. J Diabetes Metab 2013; 4:6.

Pollock NK, Bundy V, Kanto W, et al. Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adolescents. J Nutr 2012; 142(2), 251-7.

Patel P, Abate N. Body fat distribution and insulin resistance. Nutrients 2013; 5(6):2019-27.

Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin-glucose axis. Front Neurosci 2013; 7:51.

Frühbeck G, Catalán V, Rodríguez A, et al. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep 2017; 7(1):6619.

Ghadge AA, Khaire AA. Leptin as a predictive marker for metabolic syndrome. Cytokine2019; 121:154735.

López-Jaramillo P, Gómez-Arbeláez D, López-López J, et al. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Investig 2014; 18(1):37-45.

Scheid MP, Sweeney G. The role of adiponectin signaling in metabolic syndrome and cancer. Rev Endocr Metab Disord 2014; 15:157-67.

Monserrat-Mesquida M, Quetglas-Llabrés M, Capó X, et al. Metabolic Syndrome is Associated with Oxidative Stress and Proinflammatory State. Antioxidants (Basel) 2020; 9(3):236.

Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132(6):2169-80.

Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol 2017; 37:35-40.

Sutherland JP, McKinley B, Eckel RH. The metabolic syndrome and inflammation. Metab Syndr Relat Disord 2004; 2(2):82-104.

Krogh-Madsen R, Plomgaard P, Møller K, Mittendorfer B, Pedersen BK. Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans. Am J Physiol Endocrinol Metab 2006; 291(1):E108-14.

Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol 2018; 13;9:754.

Festa A, D'Agostino R Jr, Tracy RP, Haffner SM. Insulin Resistance Atherosclerosis Study. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2002; 51(4):1131-7.

Esser N, Paquot N, Scheen AJ. Inflammatory markers and cardiometabolic diseases. Acta Clin Belg 2015; 70(3):193-9.

Kanmani S, Kwon M, Shin MK, Kim MK. Association of C-Reactive Protein with Risk of Developing Type 2 Diabetes Mellitus, and Role of Obesity and Hypertension: A Large Population-Based Korean Cohort Study. Sci Rep 2019; 9(1):4573.

Gormsen LC, Sundelin EI, Jensen JB, et al. In Vivo Imaging of Human 11C-Metformin in Peripheral Organs: Dosimetry, Biodistribution, and Kinetic Analyses. J Nucl Med 2016; 57(12):1920-6.

LaMoia TE, Shulman GI. Cellular and Molecular Mechanisms of Metformin Action. Endocr Rev 2021; 42(1):77-96.

Szymczak-Pajor I, Wenclewska S, Śliwińska A. Metabolic Action of Metformin. Pharmaceuticals (Basel) 2022; 15(7):810.

Bailey CJ. Metformin: historical overview. Diabetologia 2017; 60(9):1566-76.

Fujita Y, Inagaki N. Metformin: New Preparations and Nonglycemic Benefits. Curr Diabetes Rep 2017;17(1):5.

Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60(9):1577-85.

Feng J, Wang X, Ye X, et al. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114.

Asadipooya K, Uy EM. Advanced Glycation End Products (AGEs), Receptor for AGEs, Diabetes, and Bone: Review of the Literature. Journal of the Endocrine Society 2019; 3(10): 1799-818.

Nuttall M E, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 2004; 4;290- 4.

Kawai, Masanobu & Rosen, Clifford. Bone Marrow Fat and Bone Mass. Translational Endocrinology of Bone; 2013; 167-79.

Felice JI, Gangoiti MV, Molinuevo MS, McCarthy AD, Cortizo AM. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism 2014; 63(2):296-305.

Felice J I, Schurman L, McCarthy AD, Sedlinsky C, Aguirre JI, Cortizo AM. Effects of fructose-induced metabolic syndrome on rat skeletal cells and tissue, and their responses to metformin treatment. Diabetes Res Clin Pract 2017; 126:202-13.

Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS. Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract 2013; 101:177-86.

Kramer I, Halleux C, Keller H, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 2010; 30(12):3071-85.

Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci 2019; 20(19):4873.

Alonso G, García-Martín A, Muñoz-Torres M. Wnt pathway and sclerostin as new targets for assessment and treatment of osteoporosis. Med Clin 2012; 139(14):634-9.

Huang KC, Chuang PY, Yang TY, Huang TW, Chang SF. Hyperglycemia inhibits osteoblastogenesis of rat bone marrow stromal cells via activation of the Notch2 signaling pathway. Int J Med Sci 2019; 16(5):696-703.

Engin F, Yao Z, Yang T, et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 2008; 14(3):299-305.

von Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Connor E. Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int 2007; 18:1337-44.

Hwang DK., Choi HJ. The relationship between low bone mass and metabolic syndrome in Korean women. Osteoporosis international: a journal established as result of 103 cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA; 2010; 21(3):425-31.

Kim HY, Choe JW, Kim HK, et al. Negative association between metabolic syndrome and bone mineral density in Koreans, especially in men. Calcified Tissue Int 2010; 86(5):350-8.

Sun K, Liu J, Lu N, Sun H, Ning,G. Association between metabolic syndrome and bone fractures: A meta-analysis of observational studies. BMC endocrine disorders 2014; 14: 13.

Chin KY, Wong SK, Ekeuku SO, Pang K L. Relationship Between Metabolic Syndrome and Bone Health - An Evaluation of Epidemiological Studies and Mechanisms Involved. Diabetes, metabolic syndrome and obesity: targets and therapy 2020; 13:3667-690.

Muka, T., Trajanoska, K., Kiefte-de Jong, J. C., et al. The Association between Metabolic Syndrome, Bone Mineral Density, Hip Bone Geometry and Fracture Risk: The Rotterdam Study. PLOS ONE; 2015; 10(6), e0129116.

Marycz K, Tomaszewski KA, Kornicka K, et al. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo. Oxid Med Cell Longev 2016; 2016:9785890.

Lee YS, Kim YS, Lee SY, et al. AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 2010; 47:926-37.

Molinuevo M S, Schurman L, McCarthy AD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res, 2010; 25: 211-21.

Mai QG, Zhang ZM, Xu S, et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 2011; 112:2902-9.

McCarthy AD, Cortizo AM, Sedlinsky C. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy. World J Diabetes, 2016; 7(6):122-33.

Jiating L, Buyun J, Yinchang Z. Role of Metformin on Osteoblast Differentiation in Type 2 Diabetes. Biomed Res Int 2019; 2019:9203934.

Wang C, Li H, Chen SG, et al. The skeletal effects of thiazolidinedione and metformin on insulin-resistant mice. J Bone Miner Metab 2012; 30(6):630-7.

Gao Y, Li Y, Xue J, Jia Y, Hu J. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 2010; 635(1-3):231-6.

La Fontaine J, Chen C, Hunt N, Jude E, Lavery L. Type 2 diabetes and metformin influence on fracture healing in an experimental rat model. J Foot Ankle Surg 2016; 55(5), 955-60.

Jeyabalan J, Viollet B, Smitham P, et al. The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporos Int 2013; 24(10):2659-70.

Wanionok, NE. Alteraciones óseas asociadas al Síndrome Metabólico en ratas: evaluación preclínica de un tratamiento oral con metformina. Tesis de Doctorado. Universidad Nacional de La Plata; 2023.

Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005; 48(7):129299.

Solomon DH, Cadarette SM, Choudhry NK, Canning C, LevinR, Stürmer T. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocr Metab 2009; 94(8):2792-8.

American Diabetes Association. Treatment effects on measures of body composition in the TODAY clinical trial. Diabetes Care 2013; 36:1742-8.

Choi HJ, Park C, Lee YK, Ha YC, Jang S, Shin CS. Risk of fractures and diabetes medications: a nationwide cohort study. Osteopor Int 2016; 27:2709-15.

Schwartz AV, Pan Q, Aroda VR, et al. Diabetes Prevention Program Research Group. Long-term effects of lifestyle and metformin interventions in DPP on bone density. Osteoporos Int 2021; 32(11):2279-87.

Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR. Use of thiazolidinediones and fracture risk. Arch Intern Med 2008; 168(8):820-5.

Monami M, Cresci B, Colombini A, et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 2008; 31(2):199-203.

Oh TK, Song IA. Metformin therapy and hip fracture risk among patients with type II diabetes mellitus: A population-based cohort study. Bone 2020; 135:115325.

Wang LX, Wang GY, Su N, Ma J, Li YK. Effects of different doses of metformin on bone mineral density and bone metabolism in elderly male patients with type 2 diabetes mellitus. World J Clin Cases 2020; 8(18):4010-6.

Zinman B, Haffner SM, Herman WH, et al. Effect of Rosiglitazone, Metformin, and Glyburide on Bone Biomarkers in Patients with Type 2 Diabetes. J Clin Endocrinol Metab 2010. 95:134-–42.

Duan W, Zou H, Zang N, Ma D, Yang B, Zhu L. Metformin increases bone marrow adipose tissue by promoting mesenchymal stromal cells apoptosis. Aging (Albany NY) 2023;15(2):542-52.

Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 2006; 536:38-46.

Sun R, Liang C, Sun Y, Xu Y, Geng W, Li J. Effects of metformin on the osteogenesis of alveolar BMSCs from diabetic patients and implant osseointegration in rats. Oral Diseases 2022; 28(4):1170-80.

Colhoun HM, Livingstone SJ, Looker HC, Morris AD, Wild SH, Lindsay RS. Scottish Diabetes Research Network Epidemiology G. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia 2012; 55:2929-37.