Obtención, caracterización y biocompatibilidad de hidrogeles poliméricos para Ingeniería de Tejidos.
Contenido principal del artículo
Resumen
Ingeniería de tejido es una ciencia interdisciplinaria que se encuentra en constante búsqueda de materiales que puedan ayudar a reparar el tejido dañado, en nuestro caso, tejido óseo y cartilaginoso. En este trabajo, obtuvimos un biomaterial utilizando alginato de sodio (polímero natural) y polielectrolito catiónico sintético (PEC) producido en nuestros laboratorios. La unión de ambos polímeros dada por fuerzas iónicas, se vio incrementada gracias a la aplicación de ultrasonido. Cuando evaluamos la toxicidad in-vitro de los biomateriales utilizando células macrofágicas RAW 264.7, encontramos que la aplicación de ultrasonido produjo un material no toxico en relación a cuando esta tecnología no se aplica, además de una mayor capacidad de fomentar la proliferación de células preosteoblasticas MC3T3-E1 y células condrocíticas crecidas sobre ellos. Si bien, hace falta realizar experimentos adicionales, nuestro biomaterial Alginato-PEC con ultrasonido resulta ser prometedor para ser utilizado como scaffolds en Ingeniería de tejido óseo y cartilaginoso.
Detalles del artículo
Derechos de autor: Actualizaciones en Osteología es la revista oficial de la Asociación Argentina de Osteología y Metabolismo Mineral (AAOMM) que posee los derechos de autor de todo el material publicado en dicha revista.
Citas
Azi ML, Aprato A, Santi I, Kfuri M Jr, Masse A, Joeris A. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskeletal Disord 2016;14:465.
Morosano M, Masoni A, Sánchez A. Incidence of hip fractures in the city of Rosario, Argentina. Osteoporos Int 2005;16:1339.
Lu Y-C., Lin YC., Lin Y-K., Liu Y-J. Prevalence of Osteoporosis and Low Bone Mass in Older Chinese Population Based on Bone Mineral Density at Multiple Skeletal Sites. Scientific Reports 2016;6:25206.
Rojas Padilla LG, Quintero Hernández S, Jiménez Ávila J, López Cervantes RE, Amadei R, Pesciallo C, et al. Hip fracture care – Latin America. OTA Int 2020;3(1):e064.
Garabano G, Cubecino A, de Bielke HS, Robador N, Olivetto JM, Sierto M, Gamarra D. Epidemiología de la fractura de cadera en la Argentina. RevAsoc Arg Ortop Traumatol 2020;85:437-446.
IOF 2022 https://www.osteoporosis.foundation/sites/iofbonehealth/ files/2022-09/LATAM%20Audit%202021%20-%20Secci%C3%B3n%20General%20-%20FINAL.pdf
Fernández JM. Importancia de la angiogénesis en el diseño de scaffolds para ingeniería de tejido óseo. Actual Osteol 2020;16(3):211-31.
Schurman L, Bagur A, Claus-Hermberg H, Messina OD, Negri A, Sánchez Al. Guías para diagnóstico, prevención y tratamiento de la osteoporosis 2007. Rev Arg Osteol 2007;6:27-42.
Vinatier C, Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehab Med 2016;59:139-44.
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, et al.Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023;8(1):56.
Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee Osteoarthritis: Epidemiology, Pathogenesis, and Mesenchymal Stem Cells: What Else Is New? An Update. Int J Mol Sci 2023;24(7):6405.
Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarhritis. Osteoarthr Cartilage 2022;30:184-95.
Correa D, Lietman SA. Articular cartilage repair: Current needs, methods and research directions. Semin Cell Dev Biol 2017;62:67-77.
Grotle M, Hagen KB, Natvig B, Dahl FA, Kvien TK. Obesity and osteoarthritis in knee, hip and/or hand: an epidemiological study in the general population with 10 years follow-up. BMC Musculoskel Dis 2008;9:132-6.
Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatric Med 2010;26:355-69.
Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med 2000;133:321-8.
Ritcher W. Mesenchymal stem cells and cartilage in situ regeneration. J Int Med 2009;266:390-405.
Loures FB, Chaoubah A, Oliveira VM, Almeida AM, Campos EM, Paiva EP. Economic analysis of surgical treatment of hip fracture in older adults. Rev Saude Publica 2015;49:12.
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, Osowski A, Wojtkiewicz J. Articular Cartilage Aging-Potential Regenerative Capacities of Cell Manipulation and Stem Cell Therapy. Int J Mol Sc 2018;19:623-48.
Langer R, Vacanti JP. Tissue engineering. Science 1993;14:920-6.
Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 2011;17(4):281-99
Suamte L, Tirkey A, Barman J, Babu PJ. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater Manufact 2023;1:100011.
Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 2017;5:17014.
Costa L, Silva-Correia J, Oliveira JM, Reis RL. Gellan Gum-Based Hydrogels for Osteochondral Repair. En: Oliveira JM, Pina S, Reis RL, San Roman J (eds). OsteochondrTissEng 2018;1058:281-304.
Cortizo MS, Molinuevo MS, Cortizo AM. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering. J Tissue Eng Regen Med 2008;2:33-42.
Belluzo MS, Medina LF, Cortizo AM, Cortizo MS. Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications. Ultrasonics Sonochem 2016;30:1-8.
Fernández JM, Molinuevo MS, Cortizo AM, McCarthy AD, Cortizo MS. Characterization of poly (ε-caprolactone)/Polyfumarate blends as scaffolds for bone tissue engineering. J Biomat Sci Polym E2010;21(10):1297-312.
Fernández JM, Oberti TG, Vikingsson L, Gomez-Ribelles JL, Cortizo AM. Biodegradable polyester networks including hydrophilic groups favor BMSCs differentiation and can be eroded by macrophage action. Polym Deg Stab 130;2016:38-46.
Lastra ML, Molinuevo MS, Cortizo AM, Cortizo MS. Fumarate Copolymer–Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromol Bioc 2017;17:1600219.
Torres ML, Fernández JM, Dellatorre FG, Cortizo AM, Oberti TG. Purification of alginate improves its biocompatibility and eliminates cytotoxicity in matrix for bone tissue engineering. Algal Res 2019;40:101499.
Torres ML, Oberti TG, Fernández JM. HEMA and Alginate-based chondrogenic semi-interpenetrated hydrogels: Synthesis and Biological Characterization. J Biomat Sci- Polym E 2021; 32(4):504-23.
Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 2020;162:1414–28
Belluzo MS, Medina LF, Molinuevo MS, Cortizo MS, Cortizo AM. Nanobiocomposite based on natural polyelectrolytes for bone regeneration. J Biomed Mater Res Part A 2019;108:1467-78.
Fernández JM, Cortizo MS, Cortizo AM. Fumarate/Ceramic Composite Based Scaffolds for Tissue Engineering: Evaluation of Hydrophylicity, Degradability, Toxicity and Biocompatibility. J Biomat Tiss Eng 2014;4:227-34.
Hurtado Cuba AG, Borgeaud M, Belluzo MS, Oberti TG, Fernández JM. Estudio de biocompatibilidad de matrices poliméricas combinadas, responsivas al pH, con potencial aplicación en ingeniería de tejido óseo. Actual Osteol 2023;19:128-43.
Ibbett RN (eds). NMR spectroscopy of polymers. New Delhi: Springer Science & Business Media; 1993
Ni H, Yang Y, Chen Y, Liu J, Zhang L, Wu M. Preparation of a poly(DMAEMA-co-HEMA) self-supporting microfiltration membrane with high anionic permselectivity by electrospinning. e-Polymer 2016;17:149-57.
Cherifi BI, Belbachir M, Rahmouni A. Green anionic polymerization of vinyl acetate using Maghnite-Na+ (Algerian MMT): synthesis characterization and reactional mechanism. Discov Chem Eng 2021;1:5.
Dong Z, Wei H, Mao J, Wang D, Yang M, Bo S, Ji X. Synthesis and responsive behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes grafted on silica nanoparticles and their quaternized derivatives. Polymer 2012;53:2074-84.
Yan P, Lan W, Xie J. Modification on sodium alginate for food preservation: A review. Trends Food Sci Tech 2024;143:104217.
Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 1999;29(1):295-326.
Feng W, Isayev AI. In situ compatibilization of PP/EPDM blends during ultrasound aided extrusion. Polymer 2004;45(4):1207-16.
Tabata M, Miyazawa T, Kobayashi O, Sohma J. Direct evidence of main-chain scissions induced by ultrasonic irradiation of benzene solutions of polymers. Chem Phys Lett1980;73(1):178- 80.
Lebovitz AH, Gray MK, Chen AC, Torkelson JM. Interpolymer radical coupling reactions during sonication of polymer solutions. Polymer 2023;44(10):2823-28.
Oh JS, Isayev AI, Rogunova MA. Continuous ultrasonic process for in situ compatibilization of polypropylene/natural rubber blends. Polymer 2023;44(8):2337-49.
El Sherbiny IM, Yacoub MJ. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013;3: 316-42.
Radulescu DM, Neacsu IA, Grumezescu AM, Andronescu E. New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers 2022;14(4):799.
Raschke WC, Baird S, Ralph P, Nakoinz I. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 1978;15(1):261-7.
Denlinger LC, Fisette PL, Garis KA, et al. Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J Biol Chem 1996;271(1):337-42.
Singh AK, Pramanik K. Fabrication and investigation of physicochemical and biological properties of 3D printed sodium alginate-chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application. J Appl Polym Sci 2023;140:e53642.
Xue W, Liu B, Zhang H, et al. Controllable fabrication of alginate/poly-L-ornithine polyelectrolyte complex hydrogel networks as therapeutic drug and cell carriers. Acta Biomater 2022;138:182-92.