Efecto de metales seleccionados sobre el tejido óseo del aparato masticatorio

Contenido principal del artículo

Kamil Bijowski
Zofia Dąbrowska
Mariusz Zagajewski
Barbara Onopiuk
Ewa Dąbrowska

Resumen

El aparato  masticatorio constituye una unidad funcional del cuerpo humano especializada en la regulación y coordinación de los procesos del habla, la masticación y la deglución. Está constituida por huesos, ligamentos, articulaciones, músculos y dientes. El tejido óseo de la cavidad bucal es el primero en estar expuesto a factores exógenos durante la alimentación y la respiración.


El objetivo del presente trabajo es realizar una revisión de lo reportado en la literatura en los últimos años, respecto a los efectos beneficiosos o nocivos de los metales pesados sobre el metabolismo de los huesos del aparato masticatorio.


En resumen, se evidencia que los metales presentes en el medio ambiente afectan a éstos huesos en diferentes grados. Se debe prestar especial atención a identificar las fuentes de donde provienen estos metales, para prevenir los efectos no deseados sobre el tejido óseo masticatorio generados por una excesiva exposición a los mismos.

Detalles del artículo

Cómo citar
1.
Bijowski K, Dąbrowska Z, Zagajewski M, Onopiuk B, Dąbrowska E. Efecto de metales seleccionados sobre el tejido óseo del aparato masticatorio . Actual. Osteol. [Internet]. 7 de noviembre de 2022 [citado 22 de enero de 2025];17(1):p. 35-44. Disponible en: https://ojs.osteologia.org.ar/ojs33010/index.php/osteologia/article/view/58
Sección
Actualizaciones

Citas

Madeddu R, Solinas G, Forte G, et al. Diet and Nutrients are Contributing Factors that Influence Blood Cadmium Levels. Nutr Res 2011; 31: 691-7.

Romaniuk A, Korobchanska AB, Kuzenko Y, et al. Mechanisms of morphogenetic disorders in the lower jaw under the influence of heavy metal salts on the body. Interv Med Appl Sci 2015;7(2):49-52.

Edwards J, Ackerman C. A review of diabetes mellitus and exposure to the environmental toxicant cadmium with an emphasis on likely mechanisms of action. Curr Diabetes Rev 2016;12:252-8.

Satarug S, Swaddiwudhipong W, Ruangyuttikarn W, et al. Modeling cadmium exposures in low- and high-exposure areas in Thailand. Environ Health Perspect 2013; 121:531-6.

Perelló G, Llobet JM, Gómez-Catalán J, et al. Human Health Risks Derived from Dietary Exposure to Toxic Metals in Catalonia, Spain: Temporal Trend. Biol Trace Elem Res 2014;162:26-37.

Krzywy I, Krzywy E. Kadm-czy jest się czego obawiać?. Annales Academiae Medicae Stetinensis. Roczniki Pomorskiej Akademii Medycznej w Szczecinie 2011;57(3):49-63.

Engstrom A, Michaelsson K, Vahter M, et al. Associations between Dietary Cadmium Exposure and Bone Mineral Density and Risk of Osteoporosis and Fractures among Women. Bone 2012;50:1372-8.

Browar AW, Koufos EB, Wei Y, et al. Cadmium Exposure Disrupts Periodontal Bone in Experimental Animals: Implications for Periodontal Disease in Humans. Toxics 2018; 6(2):32.

Browar AW, Leavitt LL, Prozialeck WC, et al. Levels of Cadmium in Human Mandibular Bone. Toxics 2019;7(2):31.

Brzóska MM, Rogalska J, Kupraszewicz E. The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: A study in a rat model of moderate and relatively high human exposure. Toxicol Appl Pharm 2011;250(3):327-35.

Wilk A, Kalisińska E, Różański J, et al. Kadm, ołów i rtęć w nerkach człowieka. Medycyna Środowiskowa - Environmental Medicine 2013;16(1):75-81.

Ociepa-Kubicka A, Ociepa E. Toksyczne oddziaływanie metali ciężkich na rośliny, zwierzęta i ludzi. Inżynieria i Ochrona Środowiska 2012;15(2):169-80.

Alhasmi AM, Gondal MA, Nasr MM, et al. Detection of toxic elements using laser-induced breakdown spectroscopy in smokers’ and nonsmokers’ teeth and investigation of periodontal parameters. Appl Opt 2015;54:7342-9.

Truntzer J, Vopat B, Feldstein M, et al. Smoking cessation and bone healing: optimal cessation timing. Eur J Orthop Surg Traumatol 2015;25:211-5.

Zoroddu MA, Aaseth J, Crisponi G, et al. The essential metals for humans: A brief overview. J Inorg Biochem 2019;195:120-9.

Zhang SQ, Yu XF, Zhang HB, et al. Comparison of the Oral Absorption, Distribution, Excretion, and Bioavailability of Zinc Sulfate, Zinc Gluconate, and Zinc-Enriched Yeast in Rats. Mol Nutr Food Res 2018;62:1700981.

Horiuchi S, Hiasa M, Yasue A, et al. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement. J Mech Behav Biomed Mater 2014;29:151-60.

Suh KS, Lee YS, Seo SH, et al. Effect of Zinc Oxide Nanoparticles on the Function of MC3T3-E1 Osteoblastic Cells. Biol Trace Element Res 2013;155:287-94.

Azgın H, Arbağb M, Akif EZ, et al. The effects of local and intraperitoneal zinc treatments on maxillofacial fracture healing in rabbits. J Cranio MaxillSurg 2020; 48(3): 261-267.

Hojyo S, Fukada T, Shimoda S, et al. The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One 2011;6:e18059.

Seyedmajidi SA, Seyedmajidi M, Moghadamnia A, et al. Effect of zinc-deficient nutrition on craniofacial bone growth in rats. Dent Res J (Isfahan) 2014;11(4):475-80.

Tiffany AS, Gray DL, Woods TJ, et al. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications. Acta Biomater 2019;93:86-96.

He J, Feng W, Zhao BH, et al. In Vivo Effect of Titanium Implants with Porous Zinc-Containing Coatings Prepared by Plasma Electrolytic Oxidation Method on Osseointegration in Rabbits. Int J Oral Maxillofac Implant 2018;33:298-310.

Bost M, Houdart S, Oberli M, et al. Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 2016;35:107-15.

Ettinger S. Osteoporosis and fracture risk. [W:] Nutritional pathophysiology of obesity and its comorbidities. Ettinger S (red.). New York: Academic Press; 2017. pp. 209-34

Sierpinska T, Konstantynowicz J, Orywal K, et al. Copper deficit as a potential pathogenic factor of reduced bone mineral density and severe tooth wear. Osteoporosis Int 2014;25:447-54.

Marquardt ML, Done SL, Sandrock M, et al. Copper deficiency presenting as metabolic bone disease in extremely low birth weight, short-gut infants. Pediatrics 2012;130: 695-8.

Shi M, Chen Z, Farnaghi S, et al. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater 2016;30: 334-44.

Sadeghi N, Oveisi MR, Jannat B, et al. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women. J Environ Health Sci Eng 2014;12(1):125.

Qu X, He Z, Qiao H, et al. Serum copper levels are associated with bone mineral density and total fracture. J Orthop Translat 2018;14:34-44.

World Health Organization. Inorganic chromium(‎VI)‎ compounds. International Programme on Chemical Safety & Inter-Organization Programme for the Sound Management of Chemicals, ‎2013. http://www.who.int/ipcs/publications/cicad/cicad_78.pdf?ua=1, 2013.

Shah KM, Quinn PD, Gartland A, et al. Understanding the tissue effects of tribo-corrosion: Uptake, distribution, and speciation of cobalt and chromium in human bone cells. J Orthopaed Res2015;33(1):114-21.

Andrews RE, Shah KM, Wilkinson JM, et al. Effects of cobalt and chromium ions at clinically equivalent concentrations after metal-on-metal hip replacement on human osteoblasts and osteoclasts: implications for skeletal health. Bone 2011;49(4):717-23.

Drynda A, Drynda S, Kekow J, et al. Differential Effect of Cobalt and Chromium Ions as well as CoCr Particles on the Expression of Osteogenic Markers and Osteoblast Function. Int J Mol Sci 2018;19(10):3034.

Alrabeah GO, Brett P, Knowles JC, et al. The effect of metal ions released from different dental implant-abutment couples on osteoblast function and secretion of bone resorbing mediators. J Dent 2017;66:91-101.

Zijlstra WP, Bulstra SK, van Raay JJ, et al. Cobalt and chromium ions reduce human osteoblast-like cell activity in vitro reduce the OPG to RANKL ratio, and induce oxidative stress. J Orthop Res 2012;30:740-7.

Arafa KAO. Comparing the effects of titanium alloy and chrome cobalt in removable partial denture connectors on tooth mobility, bone loss and tissue reaction. The Saudi Journal for Dental Research 2016;7(2):112-7.

Langauer-Lewowicka H, Pawlas K. Rola kobaltu w ekosystemie – prawdopodobieństwo niepożądanego działania. Medycyna Środowiskowa - Environmental Medicine 2012; 15(4):139-41.

Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011;283:65-87.

Samelko L, Landgraeber S, McAllister K, et al. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation. PLoS One 2016;11(7): e0160141.

Drynda S, Drynda A, Feuerstein B, et al. The effects of cobalt and chromium ions on transforming growth factor-beta patterns and mineralization in human osteoblast-like MG63 and SaOs-2 cells. J Biomed Mater Res 2018;106(8):2105-15.

Kanaji A, Orhue V, Caicedo MS, et al. Cytotoxic effects of cobalt and nickel ions on osteocytes in vitro. J Orthop Surg Res 2014;9:91.

Pajarinen J, Lin T, Nabeshima A, et al. Mesenchymal stem cells in the aseptic loosening of total joint replacements. J Biomed Mater Res 2016;105:1195-207.

Liu G, Wang X, Zhou X, et al. Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: a strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics 2020;10(3):1074-89.

Ignjatović N, Ajduković Z, Savić V, et al. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci Mater Med 2013;24(2):343-54.

Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci 2014;19(2):164-74.

Balogh E, Paragh G, Jeney V. Influence of Iron on Bone Homeostasis. Pharmaceuticals (Basel) 2018;11(4):107.

Díaz-Castro J, López-Frías MR, Campos MS, et al. Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr 2012;51:241-7.

Díaz-Castro J, García Y, López-Aliaga I, et al. Influence of Several Sources and Amounts of Iron on DNA, Lipid and Protein Oxidative Damage during Anaemia Recovery. Biol Trace ElemRes 2013;155:403-10.

Zhao GY, Zhao LP, He YF, et al. A comparison of the biological activities of human osteoblast hFOB1.19 between iron excess and iron deficiency. Biol Trace Elem Res 2012;150:487-95.

Kim BJ, Lee SH, Koh JM, et al. The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥45 years of age (KNHANES 2008–2010). Osteoporos Int 2013; 24:2627-37.

Xiao W, Beibei F, Guangsi S, et al. Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass. J Endocrinol 2015; 226:121-34.

Wang X, Chen B, Sun J, et al. Iron-induced oxidative stress stimulates osteoclast differentiation via NF-κB signaling pathway in mouse model. Metabolism 2018;83:167-76.

Tian Q, Wu S, Dai Z. et al. Iron overload induced death of osteoblasts in vitro: Involvement of the mitochondrial apoptotic pathway. Peer J 2016;4:e2611.

Kobylińska A, Kukurba-Setkowicz M,Szulik A, et al. Rola prawidłowego żywienia w okresie ciąży w aspekcie profilaktyki próchnicy zębów u dziecka i matki. Stanowisko grupy roboczej ds. Profilaktyki stomatologicznej u kobiet w ciąży Polskiego Oddziału Sojuszu dla Przyszłości Wolnej od Próchnicy. Nowa Stomatol 2018;23(2):85-90